roboception

WORKSHOP: Good Data for Agile Production, Logistics and Lab Automation

14 – 16 MARCH Odense • Denmark ERF2023

EUROPEAN ROBOTICS FORUM

www.roboception.de

- confidential -

eu ROB

Roboception GmbH

EUROPEAN ROBOTICS FORUM

roboception

Agenda

GOOD DATA FOR AGILE PRODUCTION, LOGISTICS AND LAB AUTOMATION

- 11:05 Introduction and Definition of Statements/ Key Questions Dr. Michael Suppa, Roboception GmbH
- 11:15 **Towards Detecting and Grasping Transparent Objects** Prof. Markus Vincze, TU Vienna, Austria
- 11:25 **Robotic pick & pack: the Ocado Technology way** Dr. Radhika Gudipati, Ocado Technologies, UK
- 11:35 **Data Generation for Lab Automation** Dr. Patrick Courtney, Tec-connection, UK
- 11:45 **Good Data for Pick-and-Place in Agile Production** Dr. Michael Suppa, Roboception GmbH, Germany
- 11:55 Interactive Session/ Round Table Discussion
- 12:20 **Conclusion and Take Home Messages**

EUROPEAN ROBOTICS FORUM

Perception is the Key Technology for Flexible Automation

roboception

- In flexible automation, robots must be able to reliably detect and locate work pieces and human collaborators und varying illumination, work pieces type and locations
- In **logistics**, manual work is still pre-dominant due to the complexity of tasks and the variation of objects.
- In **industrial automation**, accurate placement is usually the key challenge
- In **lab automation**, usually fragile and transparent objects must be handled in the processes including human interaction
- Individual engineering of solutions is costly and does not scale

EUROPEAN ROBOTICS FORUM

How to Scale Vision for Grasping in Robotics

Industrial Automation

roboception

- Classical approach to use mechanical fixtures
- Individual engineering for feeding and grasping
- Usually <100 different parts
- Model data available
- Pick-and-place

Logistics

- High cycle time with 1.000 picks/h
- Usually >1.000 parts
- Objects unknown
- Pick-and-drop

Lab Automation

- Traceability of process and documentation
- Transparent objects
- Pick-and-place

Vision System

- Removal of fixtures for flexible cell design
- Model-driven approaches require a model but allow for timesaving off-site training
- Combination with classical methods allows for accuracy and robustness

Vision System

- Enables application of robots in the domain
- Data-driven approaches require data, i.e. time-consuming on-site recording and training
- Introduction of model-driven approaches reduces greediness

Vision System

- Enables application of robots in the domain
- Model-driven approaches with synthesized data for e.g. transparent objects

Roboception GmbH

www.roboception.de

Good Data Through Simulation

roboception

EUROPEAN ROBOTICS FORUM

Andrew Ng states that

"80% of the Al developer's time is spent on data preparation",

and calls for **GOOD DATA**, i.e.

"Data that is defined ' consistently, covers the important cases, has timely feedback from production data, and is sized appropriately."

https://www.forbes.com/sites/gilpress/2021/06 /16/andrew-ng-launches-a-campaign-for-datacentric-ai

Good Data, not Big Data SIMULATION REDUCES THE DATA GREEDINESS

DEPALLETIZING

SINGULATION

BIN PICKING

- Development of model- and data driven software products for picking known and unknown items in mixed scenarios
- Data recording and labelling effort vs. integration time onsite
- Assessment of ground truth exact placement
- Working with partially and/or unknown objects
- Amount of real data in relation to synthetized data

TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria

Towards Detecting and Grasping Transparent Objects

Markus Vincze

TU Wien, Automation and Control Institute

vincze@acin.tuwien.ac.at

ERF 15.3.2023, WS "Good data for agile production, logistics, and lab automation"

V4R – Vision for Robotics

"We make robots see"

- Objects X
 - Modelling
 - Recognition
 - Classification
 - Pose estimation
 - Manipulation
- RGB(D) images

Transparent Objects

Verification of Object Pose

Traceable Robotic Handling of Sterile Medical Products

- Verification of every assembly step and creation of an Audit trail
- Recognition of transparent and small parts

Transparency: Challenges

- Missing depth data
- All visible in RGB data

Approach

- Tools for creating data
- Modelling/rendering transparent objects
- Object pose estimation and verification
- Integration on robot for object grasping

Creating a Dataset

Recording sequence

3D model from coated transparent objects

- Marker and calibrated KUKA arm for accurate camera pose
 - RealSense D415, D435, automatic motion planning
- Accurate models from scans using Photoneo sensor
- Scan with up to 104 views per scene

Good Data: Groundtruth?

Do you really trust GT?

Nets learn what is annotated

To get published, improve evaluation by an epsilon Tune architecture & parameters?

Solve the actual challenge!

Good data!

Tricky objects

- Transparent, small, shiny, ...
- Similar objects classes (LienMOD)

3D-DAT – Annotation Tool

Pose annotation of tabeltop scene

- Place one object with multiple views \rightarrow transfer to other 103 views
- Automated NeRF reconstruction, modelling, and fit to data
 - Neural Rediance field volume modelling
- Allows to place models with poor depth data (transparent objects)
 [Suchi et al., RA-L 2021, ICRA 2023]

Examples

COPE End-to-end trainable Constant Runtime Object Pose Estimation

Learn from a lot of synthetic data plus a few samples

Calculating mutual IoU in RGB image Pose hypotheses are clustered → nearly constant runtime wrt. number of object instances

24 fps with 90 objects; LineMod 74%; LM-O: 35%

[Thalhammer et al.: COPE, WACV 2023]

COPE Results Transparent Objects

COPE – Synthetic data with random texture

COPE – Real World Data and Synthetic data with random texture

Another problem of real data: sample bias

Verification Loop – Vision & Physics Simulation

Physics simulation to improve pose estimate

Pose refine through inverse rendering

Verification = hypothesis generation and plausibility check with physics simulation

Verification – Multiple Objects

Extended inverse rendering pipeline Multiple objects in joint optimization Collisions as soft constraints

ref-mask

est

est-mask

loss = (est - ref)**2

Conclusion

- Datasets need to capture actual challenge
- Synthetic data is sufficient if close to actual scenes
 - Methods show significant dependence on view point and type of scene
- One → ALL views: annotate one and transfer [3D-DAT, Suchi et al., ICRA 2023]
- Pose estimation gives a hypothesis
 → Verification of pose with
 vision & physics simulation loop

Robotic pick & pack: the Ocado Technology way

Dr Radhika Gudipati

Sr Research Coordinator (Robotics & AI)

© Copyright 2023 Ocado Group plc. All rights reserved.

Who we are

© Copyright 2023 Ocado Group plc. All rights reserved.

Ocado Technology - technology pioneers

We're solving some of the **toughest technological challenges** of our age

We bring together some of the greatest minds in engineering, product, data science, robotics and UX

Twelve global retailer partners

Over 500+ patents granted and counting...

Twelve development centres out of eight countries

2,500+ technologists

Our retail partners

Our pioneering technology

© Copyright 2023 Ocado Group plc. All rights reserved.

The Ocado way

The Hive

What is The Hive?

- The Hive consists of the grid and the bots which run on it
- Thousands of bots are orchestrated by AI, collaborating to pick 50-item customer orders in just five minutes, and up to 150 orders simultaneously
- Storage of items in the grid is constantly optimised for availability and efficiency
- The Hive enables fast, accurate picking for the best economics in grocery fulfilment.

Our bots

How our bots work:

- Bots whizz around the grid at speeds of up to 4m per second, with just millimetres between each one
- Bots operate as a highly coordinated swarm, orchestrated by our AI 'air traffic' control
- Bots are modular and identical any requiring preventative maintenance can instantly be replaced with no loss of throughput
- Each bot records 1 GB of data per day, or 4TB per day for an entire swarm*
- We use ML to analyse this vast data information for monitoring and oversight.

Robotic picking and packing

© Copyright 2023 Ocado Group plc. All rights reserved.

Collaborative robotics 00

© Copyright 2023 Ocado Group plc. All rights reserved.

Robotic assistant: "Second hands"

SecondHands Video gallery: https://secondhands.eu/index.html@p=85.html

Vision - object recognition

High level reasoning / planning state A to state B

Robot hardware, low-level planning, natural language I/O

System integration

THANK YOU !

Any Questions ?

email: radhika.gudipati@ocado.com

© Copyright 2023 Ocado Group plc. All rights reserved.

Join us:

https://ocadotechnology.co/JoinUs

@OcadoTechnology

ERF 2023

Good data for agile production, logistics and lab automation

Patrick Courtney

Date and Time: 15 March 2023, 11:05-12:25

TG analytical laboratory robotics

What is the lab and why is it important? a typology of end-user laboratory

Three main capabilities

Data service "What is this?" (is it sick/safe/quality ok)

Product knowledge "How do I make this?" (prototyping)

Process knowledge

"How can I make these well?" (how to scaleup)

An increasing role for robots/automation/AI

Medicines value \$1T, compare to automotive 100bn and electronic components and systems 600bn

Data generation within Lab Automation

- What data do we deal with?
 - Objects samples and materials, in containers
 - Devices move, measure, heat, stir....
 - Results (files, images)
 - Services recipes (protocols)
 - Tasks assembling, running, cleaning etc

https://commons.wikimedia.org/wiki/File:Microplate_reader.jpg

- How can we acquire (good) appearance data?
- Some initiatives, some gaps

SBS labplate format

perception and reality

Microtitre plates – role of standards, consumables

Image credit: SBS/SLAS, Hamilton

and still many new objects

• Increasing role of 3D printing with availabilty of CAD?

• A return to glass blowing? (no CAD)

These objects are getting more robot friendly

1.5 mL FlipTube facilitates handling without risk of aerosol

Azenta storage tubes

Still a challenging visual environment

Lab in movies~

Lab in real life~

Still a challenging visual environment

• New non-robot friendly lab design

Lab in movies~

Lab in real life~

Capturing recipes and tasks: some steps in this direction

• Watching people in the lab

Fraunhofer IPA, CSEM, Klavins/U Washington...

Return to the questions set

- GOOD DATA, NOT BIG DATA: Synthetic data generation based on model data and enriched by real data create realistic ground-truth training data sets for machine learning.
- PLUG-AND-PRODUCE: The perception component of an automation solution must be easily adjustable to changing requirements.
- EASE-OF-USE: With robot vision expertise being a scarce resource, usability for robot users with little to now vision knowledge is a game-changer. These trends increase the flexibility making the RoI much easier to demonstrate, especially for SMEs.
- What else is missing: a good ontology!

TOM GAULD

NewScientist

111.

111.

2023-03-15 | Roboception GmbH

Good Data for Pick-and-Place in Agile Production

Dr. Michael Suppa

Roboception GmbH

- confidential -

ROBOTS NOT SMART ENOUGH FOR NEXT-LEVEL INDUSTRY 4.0

Roboception GmbH

- Potential offered by automating simpler use cases has been exhausted
- Next evolutionary step for Industry 4.0 is urgently needed
- Robots must be enabled to automate more complex tasks

Why 3D Stereo? UNSTRUCTURED ENVIRONMENTS REQUIRE 3D DATA

- Stereo delivers RGB-D data directly synchronized in time and calibrated
- Increase in computing resources allows for onboard computation in real-time
- Depth is needed for accuracy and flexibility, images are the key data base for machine learning
- Combination of algorithms and machine learning in one system

Camera Image

Depth Image

Confidence Image

3D Reconstruction

rc_reason CADMatch ROBOTIC MACHINE TENDING

Detects position and orientation of objects using CAD models.

- Detection and localization of objects based on CAD data
- Delivers grasp point(s) for reliable pick-and-place
- Grasp teaching interface
- Applied AI-based part training process
- Works with static and robot-mounted sensors coupled with rc_randomdot pattern projector
- Runs offboard on rc_cube

rc_reason CADMatch TWO-STAGE DETECTION USING CAD MODELS

Stage 1: Object detection and pose estimation using machine learning (CNNs). Automated training procedure on simulation images, no manual labeling required

Stage 2: Object pose refinement to reach target accuracy

rc_reason CADMatch FROM 3D CAD MODEL

Input data to template generation pipeline:

- CAD model (with sub-millimeter accuracy)
- Picture of the part
- Application description, e.g. use-case (bin picking, structured picking) and expected working range

CADMatch Template Generation SIMULATION ENVIRONMENT

- Training images generated in a photorealistic simulation environment
- Large material library for robustness against color response and lightning conditions
- Requires **no on-site** data recording
- Support for different use-cases and multi-material parts

Template Generation Service

- **1. Preparation phase:** Uploading of CAD models, preparation of the model, and validation with the user.
- 2. Generation phase: The generation workflow is executed automatically without user input.
- 3. Feedback phase: The user is informed on the success and receives a template for download. If the result needs to be discussed e.g. regarding detection accuracy, the user is contacted and the results will be discussed

roboception

rc_reason CADMatch: Generate your object template

	Sign In	
Ŭ	sername or email address*	
	Password *	
	Remember me Login	

White Goods Pilot Use Case

- CADMatch is used for the detection of cook tops
- Challenge: Black cook tops are provided in a dark template
- Approach:
 - Generation of detection templates based on CAD data
 - Template optimisation by adding real data and/or changing detection parameters

Aeronautics Pilot Use Case

- CADMatch is used for the detection of fan cowl templates
- Challenge: Robot view points, dark background and high accuracy requirements
- Approach:
 - Generation of detection templates based on CAD data

Further information:D2.1 ODIN Core Enabling technologies for perception enabled reconfigurable resources – Initial prototype

Roboception GmbH

Flexible Production with Automated Kitting Processes 3D VISION INCREASES ROBUSTNESS AND REDUCES CYCLE TIME

The new cell is running robustly and adapts to changes [...] reduced the cycle time from 40 to 25 sec; a pick-and-place operation takes 7 instead of 12 seconds."

Autonomous compilation of different parts, picked directly from the supplier's pallets, into kitting trays; cell size ~5x3 m²

- Two rc_viscores on rails above the cell detect even small parts with sub-mm precision based on CAD template
- rc_cube runs sensors, rc_reason CADMatch software and individual sorting strategies
- AprilTags and a tailored software module in the rc_cube's UserSpace (no additional computing resources)

Customer

Product(s)

Status

Online

her Danfoss Drives A/S, Grasten (Denmark)

s) 2x rc_viscore, rc_cube, individual software solution in UserSpace

In operational use at Danfoss' Grasten facility, with roll-out to other sites foreseen

https://roboception.com/en/use-case-automatedkitting-solution-with-robot-vision/

Roboception GmbH

Flexible Production with Automated Kitting Processes 3D VISION INCREASES ROBUSTNESS AND REDUCES CYCLE TIME

Visit Danfoss in the **exhibition area** to learn more about the use case

Good Data for Pick-and-Place in Agile Production

- 3D vision enables automation of complex cases also for small lot sizes
- Onsite downtimes and recording times can be reduced massively by using simulations/digital twins
- No vision expertise is needed to implement vision in production
- Automation in flexible production becomes possible and feasible in SMEs and large companies

We are looking forward doing business with you!

Dr. Michael Suppa CEO & Co-Founder

phone: +49 89 8895079-11 cell: +49 172 4195266 email: michael.suppa@roboception.de

Round Table Discussion

14 - 16 MARCH Odense • Denmark ERF2023 EUROPEAN ROBOTICS FORUM

envinded september 2012

www.roboception.de

Roboception GmbH

- confidential -

eu ROBO

Discussion

EUROPEAN ROBOTICS FORUM

From Good Data to Ease of Use

#1

GOOD DATA INSTEAD OF BIG DATA REDUCES ONSITE TRAINING TIME

roboception

- Simulation helps create realistic training data using model-knowledge
- Ground truth can be used in the training
- Enrichment with real data images instead of complete data recording process
- Results in accuracy in mm and not detection rates in percent

#2

SCALABLE ML SOFTWARE PLATFORM FOR PLUG-AND-PRODUCE

- Share ressource by deployment concept
- Allow integrators and end customers to add modules on the same plattform
- Smart Sensors allow for distribution of computing ressources

#3

USING ML TO ENSURE EASE-OF-USE FOR NON-VISION EXPERTS

- ML reduces the parameter space for the customer
- Web Interfaces with wizards allow for nonexpert use

Key Questions

- Synthetic training data generation requires model data for simulation. Do you have this data available and how exact is it?
- For unknown objects, real data is required in addition to synthetic data. Which ratio of real data to synthetic data is feasible in your use case?
- Which level of expertise regarding 3D vision and machine learning is available in your area? (none, beginner, moderate, expert)

slido

Synthetic training data generation requires model data for simulation. Do you have this data available and how exact is it?

slido

For unknown objects, real data is required in addition to synthetic data. Which ratio of real data to synthetic data is feasible in your use case?

slido

Which level of expertise regarding 3D vision and machine learning is available in your area?

Panel Discussion

Prof. Markus Vincze TU Vienna, Austria

Dr. Radhika Gudipati Ocado Technologies, UK

Dr. Patrick Courtney Tec-connection, UK

Dr. Michael Suppa Roboception GmbH, Germany

Slides will be published on the website: <u>https://roboception.com/en/innovation-en/erf2023/</u>

Interest in participating in TG Perception: michael.suppa@roboception.de

and/or registration at https://sparc-robotics-portal.eu/